Jet lag is a phenomenon that occurs when the endogenous circadian timing system becomes desynchronized from external time due to rapid travel across several time zones, and has been classified as a circadian rhythm disorder in the DSM-5. The endogenous circadian rhythm is under the control of the suprachiasmatic nucleus. Light, which is the main signal that synchronizes the endogenous circadian clock, is transmitted to the suprachiasmatic nucleus via intrinsically photosensitive retinal ganglion cells in the eye that contain the photopigment melanopsin. Light can be used to alleviate symptoms of jet lag, as several laboratory studies in humans have shown that correctly timed bright light can shift the internal biological rhythm to facilitate a faster adaptation to a new time.

Symptoms of jet lag include sleep disturbances, drowsiness during the day, reduced alertness, poor overall performance, cognitive deficits, fatigue, irritation, anxiety, depression, and gastrointestinal dysfunction. The severity of jet lag symptoms depends on the number of time zones crossed, the direction of travel, the time of day of the flight, and possibly the time of year, as well as individual parameters such as age, chronotype, and physical health. Jet lag symptoms dissipate as the internal clock shifts gradually toward the external time.

There are only a few field studies that have explored light as a countermeasure to treat the symptoms of jet lag. These studies show a modest entraining effect and increased sleep effectiveness, but no effect on performance or subjective jet lag symptoms. Earlier studies on the effect of transcranial bright light (TBL) suggest that TBL enhances quantitative...
electroencephalographic power and low-resolution electromagnetic activity in the parahippocampal areas, increases functional connectivity and activity in the sensorimotor and visual cortices in fMRI imaging, and improves motor reaction time. The aim of this study was to investigate the effects of intermittent TBL exposure on overall jet lag symptoms in a placebo-controlled, double-blind field study.

METHODS

Subjects
A total of 55 healthy male subjects 25-50 yr old (mean age ± SD: 39 ± 7 yr) completed the study. In order to minimize interindividual variation and the impact of confounding variables other than the administration of TBL, we only studied male subjects and excluded women. Subjects were recruited through newspaper ads. To qualify for the study, subjects were required to travel by plane from Finland (time zone: +2) to North America (time zone: −5 to −8) and stay a minimum of 1 wk in their destination time zone. Subjects reporting alcohol or drug abuse, unstable somatic disease, psychotic medication, medication affecting the central nervous system, shift work during the preceding 2 mo, or travel across several time zones during the travel period: the Karolinska Sleepiness Scale (KSS), the Profile of Mood States (POMS). The questionnaires were filled out twice per day at predetermined times (12:00 and 17:00). Subjects recorded their sleep-wake schedules in a sleep diary. Subjects were also asked to report any adverse effects during the trial. The details of the protocol are presented in Fig. 1B.

The subjects were randomly assigned to the bright light treatment (N = 25) group or the placebo (N = 30) group. The randomization was planned and implemented by a person outside of the research group to ensure that both subjects and researchers were blind to the group assignment. In the treatment group, bright light was administered transcranially via the ear canals. The study set-up for the placebo group was the same except that the bright light device was inactive. For both groups, the headset part of the bright light device was covered using customized earmuffs during the exposures to ensure that the subjects were blind to the condition they received. The earmuffs were equipped with detectors that ensured that the exposure was automatically discontinued if the device was used inappropriately, displaced, or removed during the treatment. In addition, the device could not be started if the headset was not in place on the head. Neither the subject nor the researcher could know or visually determine to which group a subject belonged due to the placebo-controlled, double-blind study design.

Statistical Analysis
Data were analyzed using the intent-to-treat method. Two-sample independent t-tests with equal variance were conducted in OriginPro 8.5 (OriginLab Corporation, Northampton, MA) to compare demographic data, baseline questionnaire responses, and sleep parameters across the two groups. To account for any possible differences between the two groups at baseline, the questionnaire and sleep data collected during the intervention week (i.e., post-travel days 0–6) were normalized, i.e., z-score transformed as a function of the baseline (pre-travel) population mean and SD across all subjects.

Two-way repeated measures ANOVA (PROC Mixed in SAS 9.3; SAS Institute, Cary, NC) were conducted for the normalized VAS, KSS, STAI-Y1, and POMS subscales. Model 1 tested group (TBL vs. placebo) as a between-subjects factor and time of data collection (12:00 and 17:00) as a within-subjects factor with a group × time interaction. Model 2 tested group and trial (within-subject factor) and group × trial interactions. Model 3 combined measurements that occurred on the same day (e.g., measurements 3 and 4 = day 0, etc.) to test group and day (within-subject factor) and group × day interactions. Sleep diary data were analyzed using two-way repeated measures ANOVAs for the effect of the group (TBL vs. placebo), day, and group × day interactions. Post hoc analyses were conducted in PROC Multtest (SAS 9.3) using a Bonferroni correction for multiple comparisons. All P < 0.05 were considered significant.

The recovery analysis was conducted to determine the effectiveness of TBL in alleviating jet lag symptoms. For this purpose, we determined a criterion for recovery such that subjects were defined as ‘recovered’ from jet lag if their normalized VAS score was less than 2 (where 0 = baseline value) by the end of the post-travel period.
A total of 55 subjects completed the study and were included in the intent-to-treat analysis. Demographic data and baseline questionnaire responses are presented in Table 1. There were no significant differences between the TBL and placebo group for any of the demographic data or baseline questionnaire responses, except for the baseline KSS score, for which the placebo group reported higher subjective sleepiness at baseline.

A significant difference between the TBL and placebo group [group x trial interaction: F(13, 625) = 1.81; P = 0.0383; group x day interaction: F(6, 296) = 3.35; P = 0.0033] was observed for the VAS for overall jet lag symptoms. The TBL group reported a significantly lower VAS score on post-travel days 4 and 5 (P = 0.0071 and P = 0.0403, respectively) and a trend toward significance on post-travel day 6 (P = 0.0685) compared with the placebo group (see Fig. 2A).

Subjective sleepiness (KSS) was lower in the TBL group compared with the placebo group when each trial was binned by measurement day [group x day interaction: F(6311) = 2.13; P = 0.05], but not when the trials were analyzed separately [group x trial interaction: F(13,659) = 1.32; P = 0.1958]. The TBL group rated themselves as significantly less sleepy on post-travel days 4 and 5 (P = 0.0029 and 0.0043, respectively) with a trend toward significance on post-travel days 3 and 6 (P = 0.0592 and 0.0809, respectively) compared with the placebo group (see Fig. 2B).

No significant difference in anxiety (STAI-Y1) symptoms was observed between the TBL and placebo groups across trials [group x trial interaction: P = 0.7244] or across days [group x day interaction, P = 0.3943; see Fig. 2C]. Significant differences
Fig. 2. The effect of TBL treatment on subjective symptoms of jet lag studied by Visual Analog Scale (VAS), Karolinska Sleepiness Scale (KSS), and State-Trait Anxiety Inventory (STAI-Y1) for the jet lag symptoms and the Profile of Mood States (POMS) subscales for fatigue, inertia, and forgetfulness. Positive values on the y-axis represent a Z-score worse than the pre-travel baseline value, negative values indicate a Z-score better than baseline, and 0 indicates a Z-score equivalent to baseline. Data are represented as mean ± SEM. \(^+ P < 0.1; ^* P < 0.05; ^{**} P < 0.01 \). A) Results for the VAS. B) Results for the KSS. C) Results for the STAI-Y1. D) Results for the POMS fatigue scale. E) Results for the POMS inertia scale. F) Results for the POMS forgetfulness scale.
between the TBL and placebo groups were observed in subscales of POMS for feelings of fatigue, inertia, and forgetfulness [group × day interactions: F(6309) = 5.62; P < 0.0001; F(6309) = 2.62; P = 0.0171; and F(6309) = 3.55; P = 0.0021, respectively] ([Fig. 2D, Fig. 2E, and Fig. 2F]). Compared with the placebo group, the TBL group reported less fatigue on post-travel days 4 (P = 0.0120) and 6 (P = 0.0266), a trend toward less inertia on post-travel day 5 (P = 0.0678), and less forgetfulness on post-travel day 4 (P = 0.0410). In addition, a trend toward less forgetfulness was observed on post-travel days 5 (P = 0.0720) and 6 (P = 0.0770). There were no significant differences between the TBL and placebo groups for the tension, depression, irritability, confusion, or vigor subscales (details not shown).

No significant differences between the TBL and placebo groups were observed for any of the sleep diary parameters (e.g., sleep duration, sleep quality, caffeine or alcohol use, number or duration of naps) (details not shown). None of the 55 subjects reported any adverse effects as a result of the treatment. According to the recovery analysis, more subjects in the TBL group had recovered, i.e., normalized VAS score was less than 2 by post-travel day 6 compared with the placebo group [Fisher’s Exact Test, Mantel-Haenszel χ²(1) = 4.3036, P = 0.0380; see Fig. 3].

DISCUSSION

This randomized, double-blind, placebo-controlled field study demonstrates that intermittent transcranial bright light exposure via the ear canals alleviates jet lag symptoms. Up to four doses of TBL per day significantly reduced overall post-travel jet lag symptoms as well as subjective feelings of fatigue, inertia, and forgetfulness. On average, subjects in the TBL group showed a greater rate of overall recovery based on their VAS scores than subjects in the placebo group. Interestingly, a significant effect of TBL was not observed until post-travel day 4, which may indicate a cumulative effect of the TBL treatment.

The exact underlying neurophysiological mechanisms of transcranial bright light treatment are not fully understood at this point. Recently published studies have shown that transcranial bright light does not suppress melatonin secretion. However, there is evidence that the effect may be mediated by photosensitive opsins similar to the intrinsically photosensitive retinal ganglion cells that recently have been found in extraretinal tissue in the human brain. Given that external light can also penetrate the human brain transcranially, these results suggest a general light sensitivity of the brain, which is supported by the findings of TBL exposure modulating brain function and improving psychomotor function.

The observed effects on the subjective measures of jet lag in the present study are more promising than the findings in earlier bright light field-based studies conducted with considerably small subject groups, such as 20, 15, 4, and 22 subjects, and in line with findings in corresponding field-based studies that have used pharmacological aids such as melatonin and sleeping aids which report significantly decreased sleepiness and overall symptoms of jet lag and increased sleep quality and mood with cohorts of 20, 52, 137, 24, and 320 subjects. The effect of intermittent transcranial light treatment on jet lag symptoms was measured after traveling eastwards. The intensity and duration of a single dose of TBL was based on the earlier TBL studies. Intermittent light exposure has been found to be effective in resetting the human circadian system,
and it is a more feasible and convenient method of administering bright light. The individual light exposure timing is critical because the direction of the shift is dependent on circadian phase, e.g., the core body temperature minimum, a marker of the phase of the endogenous circadian rhythm. Eastward travelers are usually recommended to avoid light before the body temperature minimum \(T_{\text{min}}\) and seek light following their \(T_{\text{min}}\) in order to facilitate a phase advance. However, when traveling east, the avoidance of ambient light exposure prior to the \(T_{\text{min}}\) is challenging under field conditions as the number of time zones crossed grows, especially across eight or more time zones. Thus, in this field study, we chose a protocol developed for phase shift studies with ocular light treatment that used delays instead of advances. The model in this study was based on the delaying model for travelers crossing more than seven delays instead of advances. The model in this study was based on the phase of the endogenous circadian rhythm. Eastward phase, e.g., the core body temperature minimum, a marker of because the direction of the shift is dependent on circadian.

24. Suhner A, Schlagenhauf P, Höfer I, Johnson L, Tschopp A, et al. Comparative study on the delaying model for travelers crossing more than seven delays instead of advances. The model in this study was based on the phase of the endogenous circadian rhythm. Eastward phase, e.g., the core body temperature minimum, a marker of because the direction of the shift is dependent on circadian.

25. Suhner A, Schlagenhauf P, Höfer I, Johnson L, Tschopp A, et al. Comparative study on the delaying model for travelers crossing more than seven delays instead of advances. The model in this study was based on the phase of the endogenous circadian rhythm. Eastward phase, e.g., the core body temperature minimum, a marker of because the direction of the shift is dependent on circadian.

